Inhibition of proliferation and differentiation and promotion of apoptosis by cyclin L2 in mouse embryonic carcinoma P19 cells.

نویسندگان

  • Lili Zhuo
  • Jie Gong
  • Rong Yang
  • Yanhui Sheng
  • Lei Zhou
  • Xiangqing Kong
  • Kejiang Cao
چکیده

Cyclin L2 (CCNL2) is a novel member of the cyclin gene family. In a previous study, we demonstrated that CCNL2 expression was upregulated in ventricular septum tissues from patients with ventricular septal defect compared to healthy controls. In the present study, we established a stable CCNL2-overexpressing P19 cell line that can differentiate to myocardial cells when treated with 1% dimethyl sulfoxide (DMSO). Our data showed that stable CCNL2-overexpressing P19 cells were less differentiated after treatment with 1% DMSO and that expression of myocardial cell differentiation-related genes (such as cardiac actin, GATA4, Mef2C, Nkx2.5, and BNP) were reduced compared to vector-only transfected P19. Moreover, P19 cells overexpressing the CCNL2 gene had a reduced growth rate and a remarkably decreased S phase. We also found that these cells underwent apoptosis, as detected by two different apoptosis assays. The anti-apoptotic Bcl-2 protein was also downregulated in these cells. In addition, real-time PCR analysis revealed that expression of Wnt and beta-catenin was suppressed and GSK3beta was induced in the CCNL2-overexpressing P19 cells. These data suggest that overexpression of CCNL2 inhibited proliferation and differentiation of mouse embryonic carcinoma P19 cells and induced them to undergo apoptosis, possibly through the Wnt signal transduction pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

An Efficient Protocol for Embryonic Carcinoma Cells P19 Differentiation to Cardiomyocytes Using Oxytocin as Inducer

Background: The capability of embryonic carcinoma cells P19 in differentiation to Cardiomyocyte was examined through inducing effects of Oxytocin (OT) and 5-Azacytidin (5Az) individually and compared with each other in laboratory condition. Materials and Methods: P19 Embryoid Bodies (EBs) was formed through hanging drops method. Then, EBs were treated with (5Az) or (OT) and the EB medium (Ct...

متن کامل

Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells

Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...

متن کامل

The effect of BMP4 on mouse embryonic stem cell proliferation and differentiation into primordial germ cells

Background and Aim: Artificial gamete production from stem cells is a novel strategy for treatment of infertility. Among various stem cell sources, embryonic stem cells (ESC) can be considered as an appropriate source for in vitro formation of germ cells. In this study we evaluated the effect of BMP4 on proliferation and differentiation of mouse embryonic stem cells into primordial germ cells (...

متن کامل

Inhibition of miR-29c promotes proliferation, and inhibits apoptosis and differentiation in P19 embryonic carcinoma cells.

In our previous study, the upregulation of microRNA (miR)-29c was identified in the mother of a fetus with a congenital heart defect. However, the functional and regulatory mechanisms of miR‑29c in the development of the heart remain to be elucidated. In the present study, the role and mechanism of miR‑29c inhibition in heart development were investigated in an embryonic carcinoma cell model. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 390 3  شماره 

صفحات  -

تاریخ انتشار 2009